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ABSTRACT

The petrogenetic processes that formed the Henry
Mountains, Utah, may be the same as those responsible for
other laccalithic intrusions in the Colorado Plateau, specifi-
cally the La Sal and Abagjo Mountains. Each range consists
of small separate intrusive centers where magma was em-
placed into Phanerozoic sediments at shallow crustal levels.
Two major rock suites, plagioclase-hornblende porphyry (95
volume percent) and syenite porphyry (5 volume percent)
exist in both the Henry and La Sal Mountains, whereas pla-
gioclase-hornblende porphyry alone is found in the Abajo
Mountains. Plagioclase-hornblende porphyry evolved from
mantle-derived magma, which was ponded in the deep crust
and assimilated amphibolite crust during open-system differ-
entiation before being emplaced at shallow crustal levels.
Plagioclase-hornblende porphyry also shows isotopic pro-
vinciality at each intrusive center, which may, in part, reflect
the isotopic diversity of the basement rocks.

Geochemically, the laccoliths and contemporaneous
volcanic rocks outside the plateau appear to have strong
affinities to arc rocks, athough their volume is much less
than that of atypical volcanic arc. We contend that the lac-
coliths are part of an east-west-oriented magmatic belt, itself
aportion of alarger mid-Tertiary magmatic system in west-
ern North America, and that the minor volume of the lacco-
liths reflects the inability of large volumes of magma to
penetrate the thick, strong, stable crust of the Colorado
Plateaul.

INTRODUCTION

The laccolithic intrusions of the Henry, La Sal, and
Abgjo Mountains of southwest Utah (fig. 1) represent much
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of the igneous activity of the Colorado Plateau interior
during mid-Tertiary time. Understanding the origin of the
laccoliths will help clarify the fundamental differences in
contemporaneous magmatism on and off the plateau, crust-
mantle dynamics involved in the formation of the magmas,
and regional tectonomagmatic processes.

We review existing data and present new data for al
three of the laccolithic ranges (fig. 1), and contemporaneous
rocks in adjacent regions of the Western United States to
address the following topics:

1. We compare the geochemistry of the rocks from all
three mountain ranges in order to assess their differences,
their similarities, and their possible tectonic affiliation.

2. We outline the petrogenesis of the Henry Mountains
laccoliths, which we propose as a model system toillustrate
the interactions between mantle-derived melts and continen-
tal crust in the Colorado Plateau. A detailed study is given
in Nelson and Davidson (1993).

3. We consider the regional relationships of the lacco-
liths to roughly contemporaneous and similarly evolved
volcanic rocks in the vicinity of the Colorado Plateau in
order to evaluate the origins of mid-Tertiary magmatism.

REGIONAL GEOLOGIC SETTING

Deformational and magmatic events have | eft the Colo-
rado Plateau interior relatively unaffected during the entire
Phanerozoic Eon (Allmendinger and others, 1987). Howev-
er, the Colorado Plateau (fig. 1) is bounded by areas of in-
tense Mesozoic and Cenozoic deformation and magmatism.
Cretaceous to Eocene Laramide shortening may have been
the result of shallow or flat subduction (Bird, 1988; Hamil-
ton, 1988) and an accompanying magmatic lull in the region
of the laccoliths and farther west (Armstrong and Ward,
1991). Mid-Tertiary andesitic to dacitic volcanism in the
Reno-Marysvale, San Juan, and Mogollon-Datil belts pro-
duced great volumes (=5x10° km3; Johnson, 1991) of ignim-
brite and similar rocks, whereas contemporaneous (middle to
late Oligocene) magmatism in the Henry, La Sal, and Abgjo
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Figure 1. Locations of the Henry, La Sal, and Abajo Mountains, the Colorado Plateau, basement terrane boundaries, and other
geographic and tectonomagmatic features of interest. A, General setting of the Southwestern United States: Numbers labeling
hachured contours show the age (in millions of years) of the onset of mid-Tertiary magmatism asit swept through the Cordillerafrom
the north and from the south (adapted from Cross and Pilger, 1978; Burke and McKee, 1979; and Glazner and Bartley, 1984).

Proterozoic basement terrane boundaries from Bowring and Karlstrom (1990). B, Detail of the Henry, La Sal, and Abajo Mountains
in the central part of the Colorado Plateau.
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M ountainswas volumetrically minor (69, 50, and 20 km3, re-
spectively) (Hunt, 1953; 1958; Witkind, 1964). The lacco-
liths may have been part of a large east-west-oriented late
Oligocene magmatic belt extending from Reno, Nev., to the
San Juan field in Colorado (Best, 1988; Sullivan and others,
1991; Nelson and others, 1992). This activity was followed
by late Cenozoic (<17 Ma) basaltic magmatism around the
margins of the Colorado Plateau. Crustal uplift and exten-
sion of terranes bordering the Colorado Plateau on the east
(Rio Grande Rift) and on the west and south (Basin and
Range province) were synchronous with the late Cenozoic
volcanism. However, the interior of the Colorado Plateau
has had little extension although it has been uplifted in Cen-
ozoic time at rates exceeding those of the Basin and Range
province (Lucchitta, 1979). To summarize, crustal deforma-
tion and magmatism in the Colorado Plateau has not been as
intense as elsewhere in the Cordillera. The structural and
rheological characteristics of the plateau may have inhibited
large-scale upper-crustal magmatism and deformation.

COLORADO PLATEAU STRUCTURE,
GEOPHYSICS, AND COMPOSITION

Geophysical data indicate that the Colorado Plateau is
underlain by thick (45-50 km) stable crust (Thompson and
Zoback, 1979; Allmendinger and others, 1986, 1987; and
Beghoul and Barazangi, 1989) and is covered by a=6-kmve-
neer of Late Proterozoic to Tertiary sedimentary rocks.
Basement terranes range from about 1.6 to 1.9 Ga in age
(Bennett and DePaolo, 1987; Karlstrom and others, 1987,
Bowring and Karlstrom, 1990). Crystalline rocks beneath
the laccolithic ranges formed a terrane termed the Y avapai
province (fig. 1) (Condie, 1982; Karlstrom and others, 1987,
Bowring and Karlstrom, 1990) along an east-northeast-
trending convergent margin.

Some of the exposed Proterozoic basement rock to the
east of the Colorado Plateau consists of metabasalt and other
meta-igneous rocks (Knoper and Condie, 1988; Boardman
and Condie, 1986), with mafic rocks making up as much as
80 percent of the assemblage in places (Robertson and
Condie, 1989). The orientation of Proterozoic terrane
boundaries and structura grain (fig. 1) indicates that the
same mafic lithologies may form the basement to much of
the Colorado Plateau. However, in New Mexico, much of
the Proterozoic basement consists of granitoid rocks exposed
in upliftsflanking the Rio Grande Rift (see Condie, 1978, for
instance); therefore, much of the Mazatzal province (fig. 1)
could be composed of silicic crust. Because quartz-rich crust
ismore easily strained than quartz-poor crust, onewould ex-
pect deformation to be preferentially concentrated in quartz-
rich regions during regional deformation. Thus, the lack of
exposures of Proterozoic basement rock in the Colorado Pla
teau not only mask direct evidence of its composition, but
could reflect a relatively mafic bulk composition and

physical properties that distributed strain into surrounding
terranes. Lower crustal P, velocities of 6.8 km/s or greater
in the Colorado Plateau (Smith and others, 1989; Wolf and
Cipar, 1993) are appropriate for mafic rocks (Fountain and
Christiansen, 1989). Velocities of 6.5-6.7 km/s or lower in
the adjacent Basin and Range province (Smith and others,
1989; Wolf and Cipar, 1993) are more consistent with inter-
mediate to silicic compositions (Fountain and Christiansen,
1989).

Some direct evidence indicates that the plateau is com-
posed of mafic crust. Amphibolite inclusions, ranging from
1to about 20 cmin diameter, are present in all intrusions and
locally compose 1 percent of the laccoliths. They are prob-
ably from the Proterozoic Yavapai basement. Most are xe-
noliths of amphibolite-facies metabasalt, though some
consist of hornblende gabbro (textural distinction). A statis-
tical study of 200 randomly collected xenoliths from the
Henry and La Sal Mountains showed that >95 percent of
them were mafic (Hunt, 1953; 1958). McGetchin and Silver
(1972) reported that >65 percent of crustal xenaliths in the
Moses Rock dike, a mid-Tertiary diatreme in the Four Cor-
ners region of the Colorado Plateau, are basaltic. They esti-
mated an average anhydrous composition for the crystalline
portion of the plateau's crust that is surprisingly mafic (54
percent SiO,, 8 percent MgO).

FIELD RELATIONS

The Henry, La Sal, and Abajo Mountains are cored by
hypabyssal intrusions, with separate intrusive centers (5, 3,
and 2, respectively) that were emplaced as multiple lacco-
liths, invading Mesozoic and upper Paleozoic sedimentary
rocks. Structurally, individual mountains represent discrete
intrusiveloci composed of acentral laccolith with radial sills
and laccoliths and intervening sedimentary screens. Jackson
and Pollard (1988) estimated the maximum depth of intru-
sion at 3to 4 km (=1 kbar) on the basis of the laccoliths po-
sition within regional stratigraphic sequences. However,
magmatic amphibole would be unstable at pressures less
than 1 kbar, and yet breakdown textures are rare in the am-
phibole of thelaccoliths. Thusthe maximum intrusion depth
given by Jackson and Pollard (1988) is close to the minimum
depth based on petrographic considerations. One exception
may be the middle La Sal Mountains, which show some
breakdown of hornblende and are emplaced at ahigher level
in the stratigraphic section (Hunt, 1958; Michael Ross, Utah
Geological Survey, ora commun., 1992).

The dominant rock type (95 volume percent) of thein-
trusions is plagioclase-hornblende porphyry (termed “dior-
ite” by Hunt, 1953, 1958; Engel, 1959; Witkind, 1964; Irwin,
1973; and Hunt, 1988). It typically consists of 20-25 vol-
ume percent phenocrysts of plagioclase and about 10 volume
percent hornblende in a fine-grained groundmass. The
plagioclase is euhedra to subhedral, 0.5 to 5 mm in cross
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section, ranges from Ang, to Anygs, and shows complex zon-
ing patterns. The hornblende is al'so euhedral to subhedral
andisgenerally <1 mmin length, but can beaslongas5mm.
The remainder of the rock generally consists of an equigran-
ular aphanitic groundmass of plagioclase, quartz, and alkali
feldspar with trace quantities of apatite and sphene. Some
plagioclase-hornblende porphyry, especialy in the La Sa
Mountains, contains clinopyroxene in subequal quantitiesto
hornblende. At the Henry and La Sal Mountains, small vol-
umes (5 volume percent) of fine-grained nepheline- to
guartz-normative Narrich syenite and rhyolite porphyries
were emplaced as small stocks, laccoliths, and dikes that
crosscut the plagioclase-hornblende porphyry. These rocks
are described in detail in Nelson (1991) and are petrographi-
caly and geochemically diverse, especially in the La Sal
Mountains. Syenite porphyry is restricted to Mount Pennell
in the Henry Mountains and to North Mountain and the
Brumley Ridge laccolith in the La Sal Mountains; it is
apparently absent in the Abajo Mountains.

GEOCHEMICAL CHARACTERISTICS
OF THE LACCOLITHS

In terms of major-element chemistry, the porphyries of
the Abajo Mountains show considerable similarity to the pla-
gioclase-hornblende porphyry of the Henry Mountains as de-
termined from a small sample set (fig. 2A, B; table 1). The
remaining compositional range shown in figure 2B repre-
sents data from Witkind (1964), who attributes at |east some
of thevariation in total alkali contents to hydrothermal alter-
ation. The trace-element systematics of the Abajo laccoliths
arevirtualy identical to those of the plagioclase-hornblende
porphyry of the Henry Mountains, which are summarized in
figure 3A. Overal, thelaccoliths havetrace-element patterns
similar to those of calc-alkaline basalt, although they have
higher absolute elemental abundances except for titanium
and phosphorus (fig. 3B). Fresh porphyry from the Abajo
Mountainsis, in general, somewhat more radiogenic than the
plagioclase-hornblende porphyry of the Henry Mountainsin
terms of strontium isotopes (fig. 4). Given the similar age,
tectonic and structural setting, and geochemical characteris-
tics of the Henry and Abajo Mountains, it is our opinion that
they reflect nearly identical igneous histories.

Despite locally pervasive alteration, the porphyries of
the La Sal Mountains have primary geochemical differences
that distinguish them from the Henry and Abajo Mountains.
These rocks are also divided into a plagioclase-hornblende
porphyry suite and a syenite-alkaline rhyolite suite (fig. 2C)
on the basis of major-element criteria and petrographic char-
acteristics. The plagioclase-hornblende porphyry is more
alkali-rich than rocks of the Henry and Abagjo Mountains,
and ranges from 60 to 63 percent SIO,. In fact some of the
plagioclase-hornblende porphyry is sufficiently enriched in
alkaliesthat it is nepheline-normative.
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Syenitic to rhyalitic rocks of the La Sal Mountains are
divided into subtypes on the basis of petrographic and
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Figure 3. Relative trace-element abundances (normalized to
primitive mantle, after Sun, 1980) of plagioclase-hornblende por-
phyry and syenite porphyry from the Henry and La Sal Mountains,
Utah (A), compared to those of typica calc-akaline basalts (Sun,
1980) and intrapl ate basalts of the Basin and Range province (Orm-
erod and others, 1988; Fitton and others, 1988) (B). Notethe simi-
larity of the porphyries to the calc-alkaline basats and their
dissimilarity to the Basin and Range basalts.

geochemical criteria. A smal group of phonolitic or
feldspathoid- (nosean-) bearing syenite porphyry (fig. 2C)
occursin alarge dike at North Mountain and in the Brumley
Ridge laccolith (Hunt, 1958) of Middle Mountain. These
nosean-bearing rocks are strongly undersaturated (nepheline
y nepheline- to quartz-normative and commonly peralkaline
(acmite-normative) syenite porphyry, whichisricher insilica
and poorer in akalies than the feldspathoid-bearing syenite
(fig. 2C). A last group consists of quartz-phyric low-silica

peralkaline rhyolite porphyry, which we interpret to be a
differentiate of peralkaline syenite.

Trace-element patterns of the porphyries of the La Sal
Mountains show some significant deviations from the pat-
terns of the Henry and Abajo Mountains, athough there is
still adistinct relative depletion in Nb (figs. 3A, 5), suggest-
ing an affinity to orogenic magmatism. 143Nd/244Nd and
875r/865r are more restricted inthe La Sal porphyries (fig. 4).

The lack of trends in the La Sal Mountains major-ele-
ment data set (fig. 6; table 1) and the distinct geochemical
differencesrelativeto the porphyries of the Henry and Abajo
Mountains may be the result of some combination of major
element mobility during alteration, different magmasources,
and different petrogenetic processes. Because of a lack of
correlation (fig. 6), the dataare not amenableto extensivein-
terpretation, and thislack of correlation extendsto trace-ele-
ment and isotope systematics as well.  Therefore,
petrogenetic processesin the Henry Mountains must serve as
a general model for the La Sal Mountains, despite the
geochemical differences.

MAGMA CHEMISTRY AND
PETROGENESISIN THE

HENRY MOUNTAINS

Fortunately, the major-element variations in the Henry
M ountains are much more orderly and amenable to interpre-
tation than those of the La Sal Mountains (fig. 6). As the
syenite porphyry represents <5 percent of the volume of the
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Figure4. €&Nd versus®/Sr/88Sr in rocks of the Henry, La Sal, and
Abajo Mountains, Utah. Note the isotopic provinciaity of each of
the intrusive centers of the Henry Mountains.
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Figure 5. Barium versus niobium in syenite porphyry (sp) and
plagioclase-hornblende porphyry (php) of the Henry and La Sal
Mountains, Utah, and in contemporaneous magmatic rocks from
the High Plateaus of Utah (Mattox, 1991), the San Juan field, Col-
orado (Colucci and others, 1991; Lipman and others, 1978), and
the Indian Peak field, Nevada (Best and others, 1989). All of these
show a genera affinity to subduction-generated andesites. The
field for orogenic andesite and the combined field for MORB (mid-
oceanic-ridge basalt) and OIB (oceanic-island basalt) are modified
from Gill (1981).

Henry Mountains, we will focus on the origin and evolution
of the plagioclase-hornblende porphyry, which, we suggest,
will also serve as amodel for the evolution of similar rocks
in the other ranges. The following review is based on a de-
tailed examination of the petrogenesis of both the syenite
and the plagioclase-hornblende porphyry of the Henry
Mountains, which can be found in Nelson and Davidson
(1993).

Plagioclase-hornblende porphyry for each intrusive
center has a distinct range of strontium, neodymium, and
lead isotopic compositions. Meta-mafic rocks of the Yava
pa and Mazatzal provinces and crustal xenoliths from the
laccoliths show extreme variations, which are reflected in
the isotopic diversity of the magmas (Nelson and Davidson,
1993; Nelson and DePaolo, 1984). The porphyriesat Mount
Ellen show systematic, major element, trace element, and
isotopic trends that allow the evaluation of petrogenetic pro-
cesses. ENd is negatively correlated with rubidium among
the plagioclase-hornblende porphyries at Mount Ellen, con-
straining the nature and extent of open-system behavior.
AFC (assimilation and fractional crystallization; DePaolo,
1981) models indicate 4045 percent crystalization and
deep crustal magmatic evolution (rate of mass assimilation/
mass fractionation (r) =0.7-0.5; Nelson and Davidson,
1993).

Given the isotopic provinciaity of the data set, hetero-
geneity of the crust, and the dominance of plagioclase-horn-
blende porphyry with 60-63 percent silica (fig. 2A), the
following model is proposed. A flux of mantle-derived
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N =
I I
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~
I

0
50

Si0,, IN PERCENT
EXPLANATION

Henry Mountains plagioclase-hornblende porphyry

Henry Mountains syenite porphyry

La Sal Mountains plagioclase-hornblende porphyry

|>>:xﬁ

La Sal Mountains syenite porphyry

Figure 6. Harker variation diagrams comparing rocks of the
Henry Mountainsto those of the LaSal Mountains, Utah. The gen-
eral lack of correlation in major-element data of the La Sal porphy-
riesisalso observed in their trace-element and i sotope systematics.

magmas impinged upon the base of the crust, and those mag-
mas that penetrated into the crust ponded in deep-crustal
magma reservoirs in which there was sufficient recharge or
underplating for AFC to proceed with a high rate of mass as-
similation to crystallization (r >0.5). Isotopic provinciality
is attributed to heterogeneity in the net assimilant at each
igneous center or mantle sourceregion. The narrow range of
SiO, concentrations and the general lack of mafic rocks in
most laccoliths suggest that the magmas were able to rise to
ashallow crustal level only when acritical density had been
reached sufficient to overcome a strength or buoyancy
barrier in the crust. Because magmas are so much more
compressible than solid rock, the density contrast between
magmaand wall rock will be much smaller inthelower crust
than at the surface, even though the magmais mafic. Based
onamodel by Herzberg (1987), abasaltic magmaat 1,200°C
and 10 kbar isonly on the order of 0.15 g/cm3 less dense than
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solid amphibolite, whereas the density contrast may double
t0 0.3 g/cm3 at the surface. At 10 kbar and 850°C, a magma
composition representative of the laccoliths (63 percent sili-
ca) ismuch more buoyant, having adensity contrast of =0.35
g/cm3. Inthislight, it may be perfectly reasonable to expect
mafic magmas to pond deep in the crust, especially when
they are surrounded by high-strength mafic wall rock.

The presence of isotopically primitive mafic rocks (in a
relative sense) at Mount Ellen requires the source of the
magmas to lie dominantly in the mantle. In addition, the
trace-element systematics of both the plagioclase
hornblende porphyry, and especialy the syenite porphyry,
seem to require that apparent geochemical similaritiesto arc
magmas (Nelson and Davidson, 1993) were probably
inherited from the mantle rather than by contamination from
continental crust.

REGIONAL TECTONOMAGMATIC
CONSIDERATIONS

There is little disagreement that mid-Tertiary magma-
tism in the laccoliths and other areas of the Western United
States, such as the Great Basin and the San Juan field, is
fundamentally basaltic. In the rhyolitic magma, however,
the primary tie to basadtic magma may be through (1)
fractional crystalization accompanied by assimilation of
crust or (2) crustal melting dueto underplating of basalts. An

QUARTZ

Melts derived from
undersaturated or
dehydration melting of
mafic crust

San Juan

Indian Peak

Henry Mountains plagioclase-
hornblende porphyry

Melts derived from
saturated melting of
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additional consideration is the mechanism that triggers the
influx of magma that drives silicic magmatism. As an
example, the flux of basaltic magma might result from
subduction, or it may have begun at “passive” hot spots in
response to crustal extension, mantle upwelling, and decom-
pression melting. Combining the two end members for the
origin of mantle-derived magmas with both end membersfor
the petrogenesis of silicic magmas yields a variety of
tectonomagmatic scenarios for their origin. However, we
present evidence that suggests that regional magmatism,
including the laccoliths, resulted from subduction-related
processes, and that the range of observed compositions (ba-
saltic andesite to rhyolite) represents open-system evolution
of mantle-derived magmas. In order to resolve differences
between the models we review some of the major-element,
trace-element, and isotopic characteristics of regional mid-
Tertiary (=32-24 Ma) magmatism together with probable
changes in the plate tectonic configuration of the Western
United States during that period.

First, the major-element and isotopic characteristics of
regional mid-Tertiary silicic magmas are not consistent with
a crustal-melting model. In most instances, crustal anatexis
ought to produce melts that are either substantially more
silicarrich or more quartz-normative than the dacitic-
rhyodacitic melts of the large ash-flow sheets of the ignim-
brite flareup (Best and others, 1989; Lipman and others,
1978). In the melting of felsic crust, minimum melts (fig. 7)

Figure 7. Ternary diagram plotting
normative compositions of Henry Moun-
tain laccoliths; of ash-flow sheets of the
Indian Peak (Best and others, 1989) and
San Juan (Lipman and others, 1978)
fields; of melts derived from mafic crust
in water-saturated (Helz, 1976), undersat-
urated (Allen and Boettcher, 1978), and
dehydrated (Rushmer, 1991) conditions;
and of granite minimum melts (labeled
phase boundaries at 0.5, 3, and 5 kbar
water pressure). Note that the laccoliths
and ash-flow sheets do not correspond
well to either type of crustal melt.

ORTHOCLASE
EXPLANATION

ALBITE

>FE< Phase boundary for granite minimum melt,

showing water pressure in kilobars
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ought to predominate, unless the degree of melting is suffi-
cient to exhaust quartz or one of thefeldspars. However, few
silicic ash-flow sheets have minimum-melt compositions
(fig. 7), whereas most are displaced from thermal minima at
all pressures. Thus, thedaciteto low-silicarhyolites of many
mid-Tertiary caldera complexes of the Western United
States contain a significant fraction of mafic minerals (Best
and others, 1989) and are not minimum melts because they
are neither liquids derived from felsic crust, nor sufficiently
evolved viafractional crystallization. Also, the plagioclase-
hornblende porphyry of the Henry Mountains and the re-
gional ash-flow sheets do not have appropriate compositions
to be melts derived from mafic crust (fig. 7), although exper-
imental data suggest that such melts may exhibit a range of
compositions depending on the starting material and condi-
tions of melting. Melting of mafic crust (fig. 7) generaly
produces liquids that are highly quartz normative (tonalites,
also containing a significant anorthite component) unless
large degrees of melting occur (Helz, 1976, Allen and
Boettcher, 1978; Beard and Lofgren, 1991; Rushmer, 1991).
In addition, these caldera complexes are surrounded by and
intercalated with andesites and basaltic andesites (Best and
others, 1989; Lipman and others, 1978). Wefind no compel-
ling reason to suppose that the silicic ash flows are crustal
melts rather than more evolved components of the same
mantle-derived system as the andesites.

Based upon an exhaustive review of available isotopic
data for the Western Cordillera, Johnson (1991) and Perry
and others (1993) concluded that commonly 50 percent or
more of the mass of the silicic ash flows originated as man-
tle-derived basalt that evolved via fractional crystallization
or AFC processes. Therefore, we give further consideration
to the isotopic character of the laccoliths and related rocksin
the region, to assess the relative contributions of crustal and
mantle sources (fig. 8). We have calculated ranges of ex-
pected isotopic compositions for 1,800-Ma crust that origi-
nated from either depleted or undepleted mantle and has
evolved from Rb/Sr and Sm/Nd ratios matching those report-
ed by Weaver and Tarney (1984) and Taylor and McL ennan
(1985) for average continental crust. The purpose of this
exercise is not to infer the isotopic composition of the crust
that has already been demonstrated to be heterogeneous
(Nelson and Davidson, 1993), but to illustrate that relatively
mafic rocks (regional basaltic andesites) and silicic rocks
(laccoliths and regional ash-flow sheets) may contain a
substantial amount of mantle-derived material even if they
are contaminated to “ crust-like” isotopic compositions.

The Grizzly Peak Tuff (fig. 8) hasisotopic characteris-
tics similar to our calculated crustal values. Johnson and
Fridrich (1990) note that the primitive end member of this
zoned ash-flow sheet is somewhat mafic (57 percent SiO,),
and would have required an unredlistically large degree of
melting of mafic crust (=60 percent) to produce the observed
SiO, concentration. Such amelt should also have concentra-
tions of other major elements quite different from those of
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Figure8. ENd versus87Sr/%Sr in Colorado Plateau laccoliths, in
rocks of the High Plateaus of Utah (S.R. Mattox, unpub. data,
1991), and in ignimbrites of the San Juan field, Colorado (Grizzly
Peak; Johnson and Fridrich, 1990), and the L atir field, New Mexico
(Johnson and others, 1990). Also shown are the hypothetical rang-
es of 1,800-Ma crust that had initial isotopic ratios derived from
depleted and undepleted mantle and has evolved to the Rb/Sr and
Sm/Nd ratios of average continental crust reported by Weaver and
Tarney (1984) and Taylor and McLennan (1985).

the observed magma. Furthermore, although the lavas of the
High Plateaus (fig. 8) also resemble our calculated crust,
they are too mafic (50-62 percent SiO,) to be crustal melts.
Clearly, “crustal” isotopic signatures alone may be mislead-
ing in assigning crustal anatexis origins even for silicic ign-
imbrites and laccoliths. The laccoliths lie between mantle
and crustal isotopic end members (fig. 8), and the petroge-
netic model for the plagioclase-hornblende porphyry
described earlier in this paper may represent alink between
the two reservairs.

Many studies have suggested that subduction beneath
the Western United States was shallow or flat during the
Laramide orogeny but then steepened in mid-Tertiary time.
(See, for example, Bird 1988; Severinghaus and Atwater,
1990; Armstrong and Ward, 1991; and Best and
Christiansen, 1991.) Models of passive extension, however,
do not account for the influence of the subducted plate that
must have existed beneath the Western United States during
mid-Tertiary time. Recent plate-tectonic reconstructions
permit the existence of a seismically active subducted slab
far inland from the pal eo-plate margin—asfar east asthe San
Juan field—as the subduction angle steepened following
Laramide compression (fig. 9). Even in the most
conservative case, the aseismic extensions of the slab may
have contributed to petrogenesis. Therefore, it isreasonable
to conclude that subducted oceanic lithosphere could have
exerted primary control on the composition, distribution, and
timing of magmatism after the Laramide orogeny.

Available data from the High Plateaus (Mattox, 1991),
San Juan field (Colucci and others, 1991), Indian Peak
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Figure 9. Plate-tectonic reconstruction of the Western United States during Tertiary time at 50 and 30 Ma
Numbered contours represent estimates for the inland limit of the seismically active slab, based on three different
assumptions about how long after subduction a slab of a given age and thickness remains distinct from the overlying
asthenosphere. (Estimate 1 is most conservative.) After Severinghaus and Atwater (1990).

caldera complex (Best and others, 1989) and the laccaliths,
plotted in figure 5, show large ratios of LILE (large-ion li-
thophile elements, such as Ba) to HFSE (high-field-strength
elements, such as Nb). These high ratios suggest the influ-
ence of subducted lithosphere; they are characteristic of arc
magmas and are believed to result either from LILE-rich
slab-derived fluidsthat infiltrate the overlying mantle wedge
(Tatsumi and others, 1986) or from extensive interactions
between basaltic melts and the mantle (Kelemen and others,
1990). In theory, any mantle-derived magma could become
depleted in HFSE according to the model of Kelemen and
others (1990). However, they notethat this processisimpor-
tant only in arc settings. Regardless of how thetrace element
signatures (fig. 3) were acquired, they seem to be a
fundamental characteristic of magmasthat are at least partly
derived from subducted lithosphere. We recognize that high

LILE/HFSE ratios could be stored in mantle lithosphere af -
fected by subduction earlier in its history, as has been in-
ferred by the geochemistry of post-subduction Cenozoic
basalts of the Western United States (Kempton and others,
1991). However, we favor the interpretation that magma-
tism with an arc-like geochemical signature was genetically
linked to active subduction beneath North America. Based
upon our observations, therefore, we present amodel for the
tectonic setting of the laccoliths and related rock bodies
throughout the region that is consistent with both their
geochemistry and their temporal and spatial distributions.

We have reviewed geologic observations which
suggest that the crust of the Colorado Plateau may be more
mafic than that of surrounding regions. Meta-mafic rocks
are stronger than their quartz-rich counterparts (Hacker and
Christie, 1990), and therefore the difference in rheological
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crust (Zandt and others, 1995), and by differencesin density (p). Crustal thicknesses after Allmendinger

and others (1987).

properties between the Colorado Plateau and surrounding
regions may be explained by compositional differences. The
contrasting physical properties and tectonomagmatic history
of the Colorado Plateau and surrounding regions are illus-
trated in a hypothetical cross section in figure 10.

Best and Christiansen (1991) and Severinghaus and
Atwater (1990) suggest that the southwestward sweep of
magmatism in the Western United States (fig. 1) wasin re-
sponse to the shortening of the subducting slab (fig. 9) asit
adjusted to decreased convergence rates during the Tertiary
Period. This resulted in the ingress of hot asthenosphere
above the subducted plate, and magmatism was initiated as
LILE-rich fluids invaded the growing mantle wedge and
reduced solidus temperatures below ambient thermal condi-
tions. The flux of slab-derived fluids accounts for the high
Ba/Nb ratios observed throughout the Western United States
(fig. 3).

Although the Colorado Plateau laccoliths seem related
to the contemporaneous magmatic centers that surround the
plateau (Nelson and others, 1992), the volume of magma
reaching upper crustal levels at those other centersis several
orders of magnitude greater. Best and Christiansen (1991)
suggested that Mesozoic shortening surrounding the
Colorado Plateau (fig. 10) preconditioned the crust in those
regions for magmatic activity. Although shortening will
initially depress isotherms, a greater net heat production in
thickened radiogenic crust will result in subsequent
warming. Overthickening of the crust may aso produce

gravitational instabilities and crustal extension, further
warming the crust. The nearly identical normative (fig. 7)
and trace-element (fig. 5) compositions, ages (fig. 1), and
volumes of the ash-flow sheets of the Indian Peak and San
Juan fields suggest that they were produced in asimilar fash-
ion. However, beneath the Col orado Plateau, the presence of
substantial mantle-derived magma beneath a thick, un-
warmed, and undeformed crust may have contributed to the
difference in major-element chemistry (fig. 7) and the large
contrast in volume between the Colorado Plateau intrusions
and contemporary volcanic fields to the west and east (fig.
10). Themodel we describeisaconsequence of the physical
characteristics of the Colorado Plateau and the change in
plate motions between Laramide and post-Laramidetime. 1t
explains the timing and distribution of magmatism in the
Western United States, the subduction chemistry of the
magmas, and the differences in igneous volumes between
the Colorado Plateau and surrounding regions.

CONCLUSIONS

Plagioclase-hornblende and minor syenite porphyries
of the Henry, La Sa, and Abago Mountains record
petrogenetic processes in an unusual geologic setting, the
Colorado Plateau interior. Although fractional crystalliza-
tion could explain the major-element variations and many
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trace-element variations, radiogenic isotope systematics re-
quire open-system interaction of arc-like mantle-derived
magmas with mafic but isotopically heterogeneous Protero-
zoic crust. Plagioclase-hornblende porphyry evolved via
assimilation and fractional crystallization in deep-crustal
magma chambers until it reached a critical density at which
it could overcome the strength of the wall rock and rise to
shallow crustal levels. In addition, the plagioclase-horn-
blende porphyry shows isotopic provinciality, indicating
that rocks from each intrusive center were derived from, or
interacted with, distinct reservoirs.

Both the plagioclase-hornblende porphyry and the
syenite porphyry magma series have trace-element
characteristics that indicate that the mantle source was
enriched in large-ion lithophile elements relative to high-
field-strength elements. This may be a primary source
characteristic of the laccoliths and of contemporaneous
andesites of the High Plateaus, Great Basin, and San Juan
field.

We interpret the magmatism at these centers to be a
consequence of subduction and changing plate motions
rather than aresult of passive hot spot activity. Although the
Henry Mountains were far removed from the location of the
Tertiary paleo-trench, recent work (Nelson and others, 1992;
Nelson and Davidson, 1993) indicatesthat the Henry, La Sal,
and Abajo Mountains were part of a east-west-oriented
segment of a late Oligocene arc that extended from the
vicinity of Reno, Nev., to the San Juan volcanic field of
Colorado. This segment, in turn, was part of a much larger
contemporaneous system that extended from Canada to
southern Mexico. The arc-like signature of the Colorado
Plateau laccoliths and other Oligocene magmatic rocksin the
region supports this interpretation. The relatively small
volume of the laccoliths suggests that the unusual physical
properties of the Colorado Plateau inhibited large volumes of
magma from reaching shallow crustal levels.
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